Analysis of the coordination technology between ATC at the boundaries of control exchange

Author:

Kulakov M. V.1,Chekhov I. A.1

Affiliation:

1. Moscow State Technical University of Civil Aviation

Abstract

Due to the constantly increasing intensity of the air traffic flow, the capacity of a particular sector of airspace reaches its predetermined value. More than 60% of all air traffic of the Russian Federation falls on the Moscow airspace and its intensity is constantly growing. The effective organization of air traffic in an aviation hub control area depends on the ability of air traffic controllers to correctly align the order of arrival and departure of aircraft with the existing traffic intensity, prohibitions and restrictions, meteorological conditions and other factors. This article considers the problematic aspects of the coordination between ATC units, leading to delays in departing and approaching aircraft, affecting the safety, efficiency and regularity of air traffic. The rules of coordination between adjacent ATC sectors, providing aerodrome dispatching service in the Russian Federation are described. The description of the coordination process between the Ostafievo Airport ATCs and the controllers of adjacent dispatch centers is given. These adjacent ATCs are the following: the Vnukovo-Radar, the Domodedovo-Radar, the FIS Vnukovo-1 and the FIS Vnukovo-2, also the ATC Tower of the state aviation. The analysis of the existing technology of ATC coordination in one aviation hub is carried out. Recommendations for improving the effectiveness of the coordination system between ATC units are presented.

Publisher

Moscow State Institute of Civil Aviation

Subject

General Medicine

Reference12 articles.

1. Voprosy rassledovaniya aviatsionnyh sobytiy s faktorami organizatsii vozdushnogo dvizheniya (OrVD) [Questions of investigation of aviation events with factors of air traffic management (air traffic management)]. Monografiya [The monograph] / Pod red. S.A. Sulaeva; ORAP [Ed. S.A. Sulaev; ORAP]. Moscow: Aviaizdat, 2015. 435 p. (in Russian)

2. Borsoev, V.A., Lebedev, G.N., Malygin, V.B., Nechaev, E.E., Nikulin, A.O. and Tin, Pkhon Chzho. (2018). Prinyatie resheniya v zadachakh upravleniya vozdushnym dvizheniyem. Metody i algoritmy [Decision Making in Air Traffic Management Tasks. Methods and Algorithms]. Moscow: Radiotekhnika, 432 p. (in Russian)

3. Khashagulgov, R.A-M. and Khodor, M.A. (2015). Chastnaya aviatsiya – novaya ugroza bezopasnosti vozdushnogo dvizheniya v Rossii [Private aviation is a new threat to air traffic safety in Russia]. H&ES Research, vol. 7, no. 3, pp. 22–26. (in Russian)

4. Malygin, V.B. and Nechaev, E.E. (2014). Metod snizheniya konfliktnosti na standartnikh marshrutakh vileta i pribitiya [Method of reducing conflicts on standard departure and arrival routes]. Scientific Bulletin of the Moscow State Technical University of Civil Aviation, vol. 11, no. 209, pp. 117– 123 p. (in Russian)

5. Skrypnik, O.N. (2009). Obespechenie posadki vozdushnyh sudov na osnove sinkhronnoy sistemy obmena dannymi [Securing of aircraft landing based on synchronous system of data exchange]. Proceedings of Irkutsk State Technical University, vol. 4, no. 40, pp. 202–204. (in Russian)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3