SQL Injection Detection using Machine Learning: A Review

Author:

Mohammed A M Oudah ,Mohd Fadzli Marhusin

Abstract

SQL injection attacks are critical security vulnerability exploitation in web applications, posing risks to data, if successfully executed, allowing attackers to gain unauthorised access to sensitive data. Due to the absence of a standardised structure, traditional signature-based detection methods face challenges in effectively detecting SQL injection attacks. To overcome this challenge, machine learning (ML) algorithms have emerged as a promising approach for detecting SQL injection attacks. This paper presents a comprehensive literature review on the utilisation of ML techniques for SQL injection detection. The review covers various aspects, including dataset collection, feature extraction, training, and testing, with different ML algorithms. The studies included in the review demonstrate high levels of accuracy in detecting attacks and reducing false positives.

Publisher

Universiti Sains Islam Malaysia

Reference26 articles.

1. "OWASP Top10 - 2021," 2021. [Online]. Available: https://owasp.org/Top10/. [Accessed 14 May 2023].

2. J. Clarke, SQL Injection Attacks and Defense, vol. 2, Waltham: Elsevier, 2012.

3. M. A. Oudah, M. F. Marhusin and A. Narzullaev, "SQL Injection Detection Using Machine Learning with Different TF-IDF Feature Extraction Approaches," in International Conference on Information Systems and Intelligent Applications, Springer, Cham, 2022, pp. 707-720. DOI: 10.1007/978-3-031-16865-9_57.

4. S. Uwagbole, W. J. Buchanan and L. Fan, "Applied Machine Learning Predictive Analytics to SQL Injection Attack Detection and Prevention," in 3RD IEEE/IFIP Workshop on Security for Emerging Distributed Network Technologies (DISSECT), Lisbon, Portugal, 2017. DOI: 10.23919/INM.2017.7987433.

5. M. Soni, A. Prakash, H. Mittal and M. Tiwari, "Honeypot Approach for Web Security," International Journal of Engineering Research in Computer Science and Engineering (IJERCSE), pp. 128-132, 19 April 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3