A Physicist View of COVID-19 Airborne Infection through Convective Airflow in Indoor Spaces

Author:

Anchordoqui Luis Alfredo,Chudnovsky Eugene M.

Abstract

General Idea: Naturally produced droplets from humans (such as those produced by breathing, talking, sneezing, and coughing) include several types of cells (e.g., epithelial cells and cells of the immune system), physiological electrolytes contained in mucous and saliva (e.g. Na+, K+, Cl-), as well as, potentially, several infectious agents (e.g. bacteria, fungi, and viruses). In response to the novel coronavirus SARS-CoV-2 epidemic, which has become a major public health issue worldwide, we provide a concise overview of airborne germ transmission as seen from a physics perspective. We also study whether coronavirus aerosols can travel far from the immediate neighbourhood and get airborne with the convective currents developed within confined spaces. Methodology: Methods of fluid dynamics are utilized to analyse the behavior of various-size airborne droplets containing the virus. Study Findings: We show that existing vortices in the air can make a location far away from the source of the virus be more dangerous than a nearby (e.g., 6 feet away) location. Practical Implications: Our study reveals that it seems reasonable to adopt additional infection-control measures to the recommended 6 feet social distancing. We provide a recommendation that could help to slow down the spread of the virus.

Publisher

Ital Publication

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3