Integrated Hydrologic-Hydrodynamic Inundation Modeling in a Groundwater Dependent Tropical Floodplain

Author:

Chomba Innocent C.ORCID,Banda Kawawa E.,Winsemius Hessel C.,Eunice Makungu,Sichingabula Henry M.,Nyambe Imasiku A.

Abstract

The rapid development of free and open-access hydrological models and coupling framework tools continues to present more opportunities for coupled model development for improved assessment of floodplain hydrology. In this study, we set up an Upper Zambezi hydrological model and a fully spatially hydrological-hydrodynamic coupled model for the Barotse Floodplain using GLOFRIM (GLObally applicable computational FRamework for Integrated hydrological–hydrodynamic Modelling). The hydrological and hydrodynamic models used are WFLOW and LISFLOOD-FP, respectively. The simulated flows generated by the wflow model for the upstream gauge stations before the Barotse Floodplain were quite similar and closely matched the observed flow as indicated by the evaluation statistics; Chavuma, nse = 0.738; kge = 0.738; pbias = 2.561 and RSR = 0.511; Watopa, nse = 0.684; kge = 0.816; pbias = 10.577 and RSR = 0.557; and Lukulu, nse = 0.736; kge = 0.795; pbias = 10.437 and RSR = 0.509. However, even though the wflow hydrological model was able to simulate the upstream hydrology very well, the results at the floodplain outlet gauge stations did not quite match the observed monthly flows at Senanga gauge station as indicated by the evaluation statistics: nse = 0.132; kge = 0.509; pbias = 37.740 and RSR = 0.9233. This is mainly because the representation of both floodplain channel hydrodynamics and vertical hydrological processes is necessary to correctly capture floodplain dynamics. Thus, the need for an approach that saves as a basis for developing fully spatially distributed coupled hydrodynamic and hydraulic models’ assessments for groundwater dependent tropical floodplains such as the Barotse floodplain, in closing the gap between hydrology and hydrodynamics in floodplain assessments. A fully coupled model has the potential to be used in implementing adaptive wetland management strategies for water resources allocation, environmental flow (eflows), flood control, land use and climate change impact assessments. Doi: 10.28991/HEF-2022-03-02-09 Full Text: PDF

Publisher

Ital Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3