Applying the Porosity-to-Cement Index for Estimating the Mechanical Strength, Durability, and Microstructure of Artificially Cemented Soil

Author:

Arrieta-Baldovino Jair,Izzo Ronaldo,Millan-Paramo Carlos

Abstract

Fine, expansive, and problematic soils cannot be used in fills or paving layers. Through additions to these soils, they can be converted into technically usable materials in civil construction. One methodology to make them viable for construction is through a stabilization process. Nevertheless, current methodologies regarding dosage based on compaction effort and the volumetric amount of binder used are unclear. Thus, this research describes cement-stabilized sedimentary silt's strength and durability properties from Curitiba (Brazil) for future application in paving. Splitting tensile strength, unconfined compressive strength, and loss of mass against wetting and drying cycles (W-D) were investigated in the laboratory utilizing greenish-gray silt (originating from one of the Guabirotuba Formation layers, Paraná) and high-early strength Portland cement- ARI (CPV). Utilized were cement concentrations (C) of 3, 5, 7, and 9%, molding dry unit weights (d) of 14, 15, and 16 kN/m3, curing periods (t) of 7, 14, and 28 days, and constant moisture content (w) of 23%. With an increase in cement concentration and curing time, the compacted mixes demonstrate an increase in strength, an improvement in microstructure, and a decrease in accumulated mass loss (ALM) and initial porosity (η). Using the porosity/volumetric cement content ratio (η/Civ), the lowest amount of cement required to stabilize the soil in terms of strength and durability was determined. The porosity/cement index provided an appropriate parameter for modeling the mechanical and durability properties, and a unique equation between the strength/accumulated loss of mass and the porosity/binder index was obtained for the curing times studied. Lastly, C = 5% by weight is the minimum acceptable amount for prospective subbase soil application. Doi: 10.28991/CEJ-2023-09-05-02 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3