On the Mechanical Concept of Self-Assembly of Nanomaterials

Author:

Babeshko V. A.1,Evdokimova O. V.2,Babeshko O. M.1,Evdokimov V. S.1

Affiliation:

1. Kuban State University, 350040, Krasnodar, Russia

2. Southern Scientific Center, Russian Academy of Sciences, 344006, Rostov-on-Don, Russia

Abstract

The article presents the mechanical concept of self-assembly of nanoparticles. It is assumed that nanoparticles are deformable stamps in a plane dynamic contact problem, lying on the boundary of a multilayer deformable medium. The constant vibration in the microcosm is caused by the oscillatory mode by the energy of phonons and magnons. Earlier, in the works of the authors, the mechanical concept of self-organization of nanoparticles was presented. It is based on high-frequency resonance, which causes the formation of standing waves. They localize the available aggregates of nanoparticles on the crest of standing waves. The self-assembly of nanoparticles is based on resonance, previously predicted by Academician I. I. Vorovich and inherent only in deformable dies in contact problems on a multilayer medium. Deformable nanoparticles are modeled by fractals representing packed block elements described by the Helmholtz equation. The resonance of the deformable dies allows the capture of nanoparticles, dictated by the Coulomb forces of attraction. It is shown that the combination of two fractals generates a new fractal with a combined carrier, and in the case of multiple association, a fragment of a nanomaterial is obtained. To implement the study, for the first time it was possible to construct a high-precision approximate solution of a plane contact problem on the action of a stamp of any finite size on a multilayer base. This result is dictated by the need for an analytical construction of the theory of self-assembly of nanomaterials.

Publisher

The Russian Academy of Sciences

Reference26 articles.

1. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Об одной механической модели самоорганизации наночастиц // Изв. РАН. МТТ. 2022. № 6. С. 72–78. https://doi.org/10.31857/S0572329922060034

2. Клеменс П. Влияние тепловых и фононных процессов на затухание ультразвука // Физическая акустика. М.: Мир, 1968. Т. 3. С. 244–284.

3. Гутфельд Р. Распространение тепловых импульсов // Физическая акустика. М.: Мир, 1973. Т. 5. С. 267–332.

4. Арефьева Л.П., Шебзухова И.Г. Смачивание и анизотропия межфазной энергии на границе контакта нанокристаллов индия с ориентированной подложкой // Физ.-хим. аспекты изучения кластеров, наноструктур и наноматериалов. 2018. № 10. С. 27–34. https://doi.org/10.26456/pcascnn/2018.10.027

5. Ворович И.И. Спектральные свойства краевой задачи теории упругости для неоднородной полосы // Докл. АН СССР. 1979. Т. 245. № 4. С. 817–820.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3