Conformal Mapping of a Z-Shaped Domain

Author:

Skorokhodov S. L.1

Affiliation:

1. Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

Abstract

For the problem of conformal mapping of a half-plane onto a Z-shaped domain with arbitrary geometry, an efficient method is developed for finding parameters of the Schwarz–Christoffel integral, i.e., the preimages of the vertices (prevertices) and the pre-integral multiplier. Special attention is given to the situation of crowding prevertices, in which case conventional integration methods face significant difficulties. For this purpose, the concept of a cluster is introduced, its center is determined, and all integrand binomials with prevertices from this cluster are expanded into a fast-convergent series by applying a unified scheme. Next, the arising integrals are reduced to single or double series in terms of Gauss hypergeometric functions F(a, b, c, q). The fast convergence of the resulting expansions is ensured by applying formulas for analytic continuation of F(a, b, c, q) to a neighborhood of the point q = 1 and using numerically stable recurrence relations. The constructed expansions are also fairly efficient for choosing initial approximations for prevertices in Newton’s iteration method. By using the leading terms of these expansions, the approximations for the prevertices are expressed in explicit form in terms of elementary functions, and the subsequent iterations ensure the fast convergence of the algorithm. After finding the parameters in the integral, the desired mapping is constructed as a combination of power series expansions at prevertices, regular expansions at the preimage of the center of symmetry, a Laurent series in a semi-annulus, and special series near the preimages of the vertical segments. Numerical results demonstrate the high efficiency of the developed method, especially in the case of strong crowding of prevertices.

Publisher

The Russian Academy of Sciences

Reference30 articles.

1. Канторович Л.В., Крылов В.И. Приближенные методы высшего анализа. Л.: Физматгиз, 1962.

2. Коппенфельс В., Штальман Ф. Практика конформных отображений. М.: Изд-во иностр. лит., 1963.

3. Gaier D. Konstructive Methoden der konformen Abbildung. Springer Tracts in Natural Philosophy. V. 3. Berlin: Springer–Verlag, 1964.

4. Trefethen L.N. Numerical computation of the Schwarz–Christoffel transformation // SIAM J. Sci. Stat. Comput. 1980. V. 1. P. 82–102.

5. Trefethen L.N., Ed. Numerical Conformal Mapping, Amsterdam: North-Holland, 1986.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3