Finding the area and perimeter distributions for flat Poisson processes of a straight line and Voronoi mosaics

Author:

Kanel-Belov A. Ya.123,Golafshan M.2,Malev S. G.4,Yavich R. P.4

Affiliation:

1. Bar-Ilan University

2. Moscow Institute of Physics and Technology (State University)

3. Nosov Magnitogorsk State Technical University

4. Ariel University

Abstract

The study of distribution functions (by areas, perimeters) for partitioning a plane (space) by a random field of straight lines (hyperplanes) and for Voronoi mosaics is a classical problem of statistical geometry. Starting from 1972 [1] to the present, moments for such distributions have been investigated. We give a complete solution of these problems for the plane, as well as for Voronoi mosaics. We investigate the following tasks: A random set of straight lines is given on the plane, all shifts are equally probable, and the distribution law has the formF(φ). What is the distribution of the parts of the partition by areas (perimeters)? A random set of points is marked on the plane. Each point A is associated with a “region of attraction”, which is a set of points on the plane to which the point Ais the closest of the set marked. The idea is to interpret a random polygon as the evolution of a segment on a moving one and construct kinetic equations. At the same time, it is sufficient to take into account a limited number of parameters: the area covered (perimeter), the length of the segment, the angles at its ends. We will show how to reduce these equations to the Riccati equation using the Laplace transform. (see theorems 1, 1 and 2).

Publisher

The Russian Academy of Sciences

Reference11 articles.

1. Miles R.E. The random division of space // Advances in Applied Probability. 1972. Vol. 4. P. 243–266.

2. Белов А.Я. Cтатистическая геометрия и равновесие блочных массивов // Дисс. … канд. физ.-мат. наук, н. рук. Р.Л. Салганик. М.: МГИ, 1991. С. 190.

3. Miles R.E. Poisson flats in Euclidean spaces // Advances in Applied Probability. 1969. Vol. 1. P. 211–237.

4. Кендалл M., Моран П. Геометрические вероятности. М.: Наука, 1972.

5. Белов А.Я. О случайных разбиениях // Деп. в ВИНИТИ. М., 1991. № 273-B91. С. 26.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3