Affiliation:
1. Institute of Metallurgy, Ural Branch of the RAS
2. Ural Federal University
Abstract
The paper considers the possibility of coating Al–Zr–V–Nb in the form of a powder with a fraction of 0.063 mm and a humidity of 0.33%, measured using the AND MX-50 device, on a substrate made of 08Cr18Ni10 steel. The deposition was carried out using a laser complex consisting of a laser radiation source LS-5 and a robot KUKA KR-60 ha in a protective argon atmosphere. Gas purging was carried out before the deposition process of 0.3 s and after 1 s. For reliable bonding of the coating powder (Al–Zr–V–Nb) with the surface of the base material (Steel 08Cr18Ni10), a mixture of powder with polyvinyl alcohol was applied to the steel before deposition. According to the data obtained on the Carl Zeiss EVO 40 scanning electron microscope, the optimal mode of deposition of Al–Zr–V–Nb powder on the base material corresponds to a power of 250 Watts at a processing speed of 0.5 m/s and a coating thickness of 0.6 mm. At a lower power of 230 W, the coating cannot melt qualitatively and, in this regard, insufficient penetration of the base metal by the coating metal (adhesion) occurs, resulting in partial detachment. If the power is increased to 270 W, then the base metal and the substrate interact with each other just as well and create a strong monolayer of the coating, as in the optimal mode, but when cooling, due to a significant difference in cooling speeds (the 08Cr18Ni10 steel plate does not have time to cool at the speed of the coating material), cracking occurs and the appearance of microcracks. Thus, there is a need to further increase the number of passes or an additional melting process to create a reliable coating with no discontinuities and islands. At the same time, measurements of Vickers microhardness (HV) during surfacing of the Al–Zr–V–Nb coating showed an increase in HV values by more than two times compared to the base material, which is a sufficient reason for using Al–Zr-V-Nb powder as a strengthening coating for 08Cr18Ni10 steel).
Publisher
The Russian Academy of Sciences
Reference29 articles.
1. Devojno O. G., Kardapolova M.A., Kalinichenko A.S., Zharskij V.V., Vasilenko A.G. Texnologiya formirovaniya iznosostojkix pokry`tij na zheleznoj osnove metodami lazernoj obrabotki [Technology of formation of wear-resistant coatings on an iron base using laser processing methods]. Minsk, 2020. [In Russian].
2. Chen J.H., Chen P.N., Lin C.M. et al. Microstructure and wear properties of multicomponent alloy cladding formed by gas tungsten arc welding (GTAW) // Surf. Coatings Technol. 2009. 203. № 20–21. P. 3231–3234.
3. Sethi A.K. Studies on hard surfacing of structural steel by gas thermal spraying process // Materials Today: Proceedings. 2020. 21. P. 1436–1440.
4. Furman E.L., Usoltsev E.A., Bakhteev I.S. et al. Effect of laser heat treatment on structure and wear resistance of cobalt stellite // Journal of Physics: Conference Series. 2019. 1396. № 1. P. 12016.
5. Momin A.G., Khatri B.C., Chaudhari M. et al. Parameters for cladding using plasma transfer arc welding — A critical // Materials Today: Proceedings. 2023. 77. P. 614–618.