Spectroradiometry of the Solar Corona on the RATAN-600

Author:

Bogod V. M.1,Lebedev M. K.1,Ovchinnikova N. E.1,Ripak A. M.1,Storozhenko A. A.1

Affiliation:

1. St. Petersburg Branch, Special Astrophysical Observatory of the Russian Academy of Sciences, St. Petersburg, Russia

Abstract

Modern studies of solar radio emission are complicated by continuous power amplification and multifrequency external interference, which often completely overlap important frequency ranges. Many topical problems in solar radio astronomy require large effective areas of radio telescopes, high frequency and time resolutions, accurate spatial measurements, and a large dynamic range. It becomes relevant to change the concept of receiving recording equipment. This paper deals with topical problems of the physics of the solar corona in combination with optimal methods of observation with large instruments. The features and difficulties of combining high parameters—dynamic, spatial, temporal, and frequency resolutions—are considered. The proposed solutions of the new-generation observation complex implement the possibilities of intelligent selection of registration conditions in a multioctave mode with multichannel over 8000 channels/GHz with temporary permission up to 8 ms/spectrum. A multiobject observation mode becomes available from powerful flaring objects to faint structures of various nature. High-speed data processing makes it possible to implement an online mode of interference elimination, which is based on a fast statistical analysis of the spectrum with the selection of non-Gaussian (interference) structures. Methods for high-speed analysis of large-volume data (the principal component analysis method) and their presentation to the user are proposed. Examples of the operation of the complex in the range of 1–3 GHz are given. The prospects of a new approach for multiobject radio astronomy observations in the implementation of the RATAN-600 tracking mode are considered: from recombination lines to wide-range spectra, from low-contrast fluctuations to fast changes in flares, etc.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3