Stochastic packaging of Cas proteins into exosomes

Author:

Ponomareva N. I.12,Brezgin S. A.12,Kostyusheva A. P.1,Slatinskaya O. V.3,Bayurova E. O.4,Gordeychuk I. V.4,Maksimov G. V.3,Sokolova D. V.5,Babaeva G.5,Khan I. I.5,Pokrovsky V. S.5,Lukashev A. S.1,Chulanov V. P.6,Kostyushev D. S.12

Affiliation:

1. First Moscow State Medical University (Sechenov University)

2. Sirius University of Science and Technology

3. Lomonosov Moscow State University

4. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences

5. N.N. Blokhin National Medical Research Center of Oncology

6. National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health

Abstract

CRISPR/Cas systems are perspective molecular tools for targeted manipulation with genetic materials, including gene editing, regulation of gene transcription, modification of epigenome etc. While CRISPR/Cas systems proved to be highly effective for correcting genetic disorders and treating infectious diseases and cancers in experimental settings, the clinical translation of these results is hampered by the lack of efficient CRISPR/Cas delivery vehicles. Modern synthetic nanovehicles based on organic and inorganic polymers have many disadvantages, including toxicity issues, the lack of targeted delivery, complex and expensive production pipelines. In turn, exosomes are secreted biological nanoparticles exhibiting high biocompatibility, physico-chemical stability, and ability to cross biological barriers. Early clinical trials found no toxicity associated with exosome injections. In recent years, exosomes have been considered as perspective delivery vehicles for CRISPR/Cas systems in vivo. The aim of this study was to analyze the efficacy of CRISPR/Cas stochastic packaging into exosomes at several human cell lines. Here, we show that Cas9 protein is effectively localized into the compartment of intracellular exosome biogenesis, but stochastic packaging of Cas9 into exosomes turns to be very low (~1%). As such, stochastic packaging of Cas9 protein is very ineffective, and cannot be used for gene editing purposes. Developing novel tools and technologies for loading CRISPR/Cas systems into exosomes is required.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3