Dynamic and agent-based models of intelligent transportation systems

Author:

Beklaryan L. A.1,Beklaryan G. L.1,Akopov A. S.1,Khachatryan N. K.1

Affiliation:

1. Central Economics and Mathematics Institute, Russian Academy of Sciences (CEMI RAS)

Abstract

The authors present mathematical and simulation models of intelligent transportation systems (ITS). The models of two types are considered: the dynamic model of cargo transportation and agent-based model of the ITS — the ‘Manhattan grid’ type. The problem of rational railway planning related to research of cargo transportation models and corresponding cargo flows within the dynamic system is studied. The process of cargo transportation was modelled considering the mechanism of interactions with major railway infrastructure elements. The variation ranges of parameters at which cargo transportation system can be consistently active are defined. Possibilities of simulation modelling transportation and pedestrian flows at the micro-level considering complex interactions between heterogeneous agents, in particular, vehicles-to-pedestrians (V2P), vehicles-to-vehicles (V2V), vehicles-to- infrastructure elements (traffic lights) (V2I) etc. using the case study as the ITS belonging to the “Manhattan grid” type studied. As a result, it is shown that ITS with partially controlled pedestrian crossings have advantage by the level of the total traffic in comparison to the ITS with uncontrolled crossings, especially with low-intensity and high-speed traffic. The two types of models are united by the unity of their tool-making description. For models of the first type, all processes at the micro-level are strictly regulated. Therefore, such systems are well characterized by established macro-indicators — states of the soliton solutions class (i. e. the solutions of travelling wave type). In models of the second type, there are large fluctuations at the micro-level that affect the safety of road users (e. g., traffic jams, accidents, etc.). This explains the use of agent-based models that consider processes at the micro-level. At the same time, macro-indicators are the most important characteristics for checking the adequacy of agent-based models.

Publisher

The Russian Academy of Sciences

Reference71 articles.

1. Акопов A. C., Бекларян Л. А. (2022). Моделирование динамики дорожно-транспортных происшествий с участием беспилотных автомобилей в транспортной системе «умного города» // Бизнес-информатика. Т. 16. № 4. С. 19–35. [Akopov A. S., Beklaryan L. A. (2022). Simulation of rates of traffic accidents involving unmanned ground vehicles within a transportation system for the ‘smart city’. Business Informatics, 16 (4), 19–35 (in Russian).]

2. Акопов А. С., Бекларян Л. А. (2015). Агентная модель поведения толпы при чрезвычайных ситуациях // Автоматика и телемеханика. № 10. С. 131–143. [Akopov A. S., Beklaryan L. A. (2015). An agent model of crowd behaviour in emergencies. Automation and Remote Control, 76 (10), 1817–1827 (in Russian).]

3. Simulation model of an intelligent transportation system for the “smart city” with adaptive control of traffic lights based on fuzzy clustering

4. Бекларян Л. А. Хачатрян Н. К. (2013). Об одном классе динамических моделей грузоперевозок // Журнал вычислительной математики и математической физики. Т. 53. № 10. С. 1649–1667. [Beklaryan L. A., Khachatryan N. K. (2013). On one class of dynamic transportation models. Computational Mathematics and Mathematical Physics, 53 (10), 1466–1482 (in Russian).]

5. Гасников А. В., Кленов С. Л., Нурминский Е. А., Холодов Я. А., Шамрай Н. Б. (2013). Введение в математическое моделирование транспортных потоков. А. В. Гасников (ред.). М.: МЦНМО. [Gasnikov A. V., Klenov S. L., Nurminsky E. A., Kholodov Ya.A., Shamray N. B. (2013). Introduction to mathematical modeling of traffic flows. A. V. Gasnikov (ed.). Moscow: Moscow Center for Continuous Mathematical Education (in Russian).]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3