Adaptive Properties of <i>Arthrobacter agilis</i> Strain wb28 Isolated from Wheat Bran

Author:

Sharova N. Yu.1,Prichepa A. O.1,Sverdlova O. P.1,Printseva A. A.1

Affiliation:

1. All‑Russia Research Institute for Food Additives, Branch of Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences

Abstract

Abstract—The article presents the results of a study of some adaptive properties of a bacterial isolate from wheat bran, identified by the 16S rRNA gene as an Arthrobacter agilis strain. According to the literature data, A. agilis does not belong to the dominant bacterial species of wheat microbial associations and activates growth at low ambient temperatures. The studied A. agilis strain showed poor growth in a microbial consortium when an aqueous suspension of wheat bran, partially fermented at 28 ± 1°C by the native microbiota, was plated on a dense MPA medium and produced the pigment after three weeks of storage at 4 ± 1°C. Moderate growth of bacteria without increased pigmentation was observed during its subsequent transfer after low-temperature storage on agar media containing carbohydrates and nitrogen compounds, mineral salts, and vitamins that were more easily utilized than native bran. The growth of colonies upon plating on such media increased in the series: thermally fermented wheat bran → HMF agar → LB (without salt). It was revealed that the A. agilis strain, which was not typical of the wheat bran microflora, under the influence of osmotic and/or temperature shock (in response to a sharp change in the NaCl concentration and/or a difference in ambient temperatures) produced pigments both in agar and liquid cultures. According to the results of spectral analysis, the pigment was assigned to carotenoids and tentatively identified as bacterioruberin. Quantitative evaluation showed that, under stress conditions during submerged cultivation, the studied strain A. agilis wb28 was able to synthesize the pigment at the level of 52.8 mg/L (17.2 mg/g biomass).

Publisher

The Russian Academy of Sciences

Reference28 articles.

1. Ястребова О.В., Плотникова Е.Г. Галотолерантные бактерии-деструкторы полициклических ароматических углеводородов рода Arthrobacter // Вестн. Пермского ун-та. 2007. Вып. 5. № 10. С. 100‒106.

2. Afra S., Makhdoumi A., Matin M.M., Feizy J. A novel red pigment from marine Arthrobacter sp. G20 with specific anticancer activity // J. Appl. Microbiol. 2017. V. 123. P. 1228–1236.

3. Bergey’s Manual of Systematics of Archaea and Bacteria / Ed. Whitman W.B. N.Y.: John Wiley & Sons, Inc., 2015. 990 p. ISBN: 978-1-118-96060-8.

4. Bertani G. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems // J. Bacteriol. 2004. V. 186. P. 595–600.

5. Davidson A., Jaine T. The Oxford Companionto Food. Oxford: Oxford University Press, 2014. 960 p. ISBN 978-0-19-104072-6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3