Visualizing Ultrasound Sources Using Signal Time Reversal in the Particle Dynamics Model

Author:

Sukhanov D. Ya.1,Kuzova A. E.1

Affiliation:

1. Tomsk State University, Tomsk, 634050 Russia

Abstract

A method is proposed for solving the inverse problem of reconstructing acoustic wave sources from field measurements on some surface using wavefront reversal in the particle dynamics method. In this method, the studied medium is represented as a set of interacting particles (material points or solid bodies), for which classical equations of motion are written. The paper considers the representation of a medium as a set of particles in a body-centered cubic crystal lattice. The case of a linear dependence of the force of attraction of particles on distance is considered. The advantage of this approach is the ability to take into account wave propagation in arbitrarily inhomogeneous media using a single numerical model. The possibility of visualizing two spherical acoustic wave sources in water behind an obstacle has been demonstrated numerically and experimentally, despite the presence of transverse waves in the considered model of a solid body; their influence is negligible in this case. The method was tested experimentally on a soundproof screen with an aperture simulating a sound-emitting object of complex shape. A wave from a point source of short pulses passes through the aperture. Using a receiving acoustic sensor mounted on a two-dimensional scanner, the spatiotemporal distribution of sound vibrations on the water surface was measured. By processing the datausing wavefront reversal in the particle model, the image of the aperture in the soundproof screen was reconstructed.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3