Time scale of adaptation at the tonal sequence processing in the awake mice auditory cortex neurons

Author:

Egorova М. А.1,Akimov А. G.1,Khorunzhii G. D.1

Affiliation:

1. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Abstract

The study was firstly carried out on stimulus-specific adaptation of neurons in the primary and anterior fields of the awake house mice auditory cortex to sound sequences of four 100-ms tonal signals, with frequency of tones corresponding to the neuronal characteristic frequency, and also with the inter-tone interval constant for one sequence and varying from 0 to 2000 ms in different sequences. The analysis of the data obtained showed the adaptation effect in the responses of all studied primary auditory cortex neurons, which was observed as the absence or significant decrease in activity evoked by the components of a series of tones following the 1st, at inter-stimulus intervals of 0–500 ms. A quantitative assessment of the adaptation effects as a function of inter-stimulus intervals within the tonal sequence, performed over whole population of studied neurons, showed that the individual time scales of adaptation of neurons varied significantly, which may be crucial for the formation of optimal time windows for the processing of grouping and separation of sound events, which are important both for perception of animal vocalizations and human speech.

Publisher

The Russian Academy of Sciences

Reference31 articles.

1. Adrian ED (1928) The basis of sensation. New York. W.W. Norton.

2. Бибиков НГ (2010) Нейрофизиологические механизмы слуховой адаптации. II. Эффекты последействия. Успехи физиол. наук 41(4): 77–92. [Bibikov NG (2010) Neurophysiological mechanisms of auditory adaptation. II. Aftereffects. Advanc Physiol Sci 41(4): 77–92. (In Russ)].

3. Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24(46): 10440–10453. https://doi.org/10.1523/JNEUROSCI.1905-04.2004

4. Malmierca MS, Sanchez-Vives MV, Escera C, Bendixen A (2014) Neuronal adaptation, novelty detection and regularity encoding in audition. Front Syst Neurosci 8: 111. https://doi.org/10.3389/fnsys.2014.00111

5. Valdés-Baizabal C, Carbajal GV, Pérez-González D, Malmierca MS (2020) Dopamine modulates subcortical responses to surprising sounds. PLoS Biol 18(10): e3000744. https://doi.org/10.1371/journal.pbio.3000984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3