Affiliation:
1. Scientific Center for Metallurgical Physics and Materials Science, Udmurt Federal Research Center of the UB of the RAS
Abstract
The method of aluminothermic self-propagating high-temperature synthesis was used to obtain a composite material based on Nb-Si-C. The study of this system is of interest from the point of view of obtaining high-temperature materials of a new generation for gas turbine engine building, capable of replacing heat-resistant nickel alloys, as well as the potential possibility of forming MAX-phases (phases Mn + 1AXn where n = 1, 2, 3, ...; M is transitional d-metal, A – p-element, X – carbon). The resulting Nb-Si-C composite were studied by X-ray diffraction, scanning electron microscopy, and X-ray spectral microanalysis. It is shown that NbC carbide and silicides γ-Nb5Si3 and NbSi2 are formed in the sample. A detailed analysis of the morphological distribution of the constituent phases has been carried out.
Publisher
The Russian Academy of Sciences
Reference27 articles.
1. Geng J. // Development of niobium silicide based in situ composites. Next generation materials for high temperature applications. LAP LAMBERT Academic Publishing, 2012. 308 p.
2. Bewlay B.P., Jackson M.R., Zhao J.-C., Subramanian P.R. // Metal. Mater. Trans. A. 2003. V. 34A. P. 2043. https://www.doi.org/10.1007/s11661-003-0269-8
3. Карпов М.И. // Металловедение и термическая обработка. 2018. T. 751. № 1. C. 9.
4. Светлов И.Л. // Материаловедение. 2010. № 9–10. С. 18.
5. Карпов М.И., Внуков В.И., Строганова Т.С., Прохоров Д.В., Желтякова И.С., Гнесин Б.А., Кийко В.М., Светлов И.Л. // Известия РАН. Серия Физическая. 2019. Т. 83. № 10. С. 1353. https://www.doi.org/10.1134/S0367676519100156