Affiliation:
1. Institute of Solid State Physics, Russian Academy of Sciences
Abstract
The processes of evolution of the structure and surface morphology of Al87Ni8La5 and Fe76Si13B11 amorphous alloys under deformation have been studied. It is shown that the deformation occurs through the formation and propagation of shear bands, which form steps when they reach the surface. The formation of nanocrystals in shear bands was noted. It is shown that steps on the surface are formed under the combined action of several elementary shear bands. Shear bands have a variable thickness in the range from 5 to 20 nm. An elementary step has a thickness of about 15 nm. Shear bands can be combined into zones. The transverse size of the zones is about 1 μm. The formation of nanocrystals in zones can lead to anisotropy in the orientational position of nanocrystals in an amorphous matrix. With an increase in the degree of deformation, nanocrystals are formed not only in shear bands, but also in areas adjacent to them. There is a difference in the kinetics of the formation of nanocrystals in an alloy based on aluminum and iron.
Publisher
The Russian Academy of Sciences
Reference27 articles.
1. Inoue A., Ochiai T., Horio Y., Masumoto T. // Mater. Sci. Eng. 1994. V. 649. P. 649. https://doi.org/10.1016/0921-5093(94)90286-0
2. He G., Löser W., Eckert J. // Scripta Mater. 2003. V. 48. P. 1531. https://doi.org/10.1016/S1359-6462(03)00128-3
3. Louzguine-Luzgin D.V., Seki I., Ketov S.V., Louzguina-Luzgina L.V., Polkin V.I., Chen N., Fecht H., Vasiliev A.N., Kawaji H. // J. Non-Cryst. Solids. 2015. V. 419. P. 12. https://doi.org/10.1016/j.jnoncrysol.2015.03.018
4. Yoshizawa, Y., Oguma, S., Yamauchi, K. // J. Appl. Phys. 1988. V. 64. P. 6044. https://doi.org/10.1063/1.342149
5. Aronin A., Budchenko A., Matveev D., Pershina E., Tkatch V., Abrosimova G. // Rev. Adv. Mater. Sci. 2016. V. 46. P. 53.