Structure, transport and magnetic properties of ultrathin and thin FeSi films on Si(111)

Author:

Galkin N. G.1,Chernev I. M.1,Subbotin E. Yu.1,Goroshko O. A.1,Dotsenko S. A.1,Maslov A. M.1,Galkin K. N.1,Kropachev O. V.1,Goroshko D. L.1,Samardak A. Yu.2,Gerasimenko A. V.3,Argunov E. V.4

Affiliation:

1. Institute of Automation and Control Processes, FEB RAS

2. Far Eastern Federal University

3. Institute of Chemistry FEB RAS

4. National Research Technological University “MISIS”

Abstract

Using solid-phase and molecular-beam epitaxy methods at 350°C, polycrystalline and epitaxial films of iron monosilicide (FeSi) with a thickness of 3.2 to 20.35 nm were grown on a Si(111) substrate, which was confirmed by X-ray diffraction data. Morphological studies have shown that the films are continuous and smooth with a root-mean-square roughness of 0.4–1.1 nm when grown by solid-phase epitaxy, and in the case of molecular beam epitaxy, they have an increased roughness and consist of coalesced grains with sizes up to 1 μm and a puncture density up to 1 × 107 cm–2. In solid-phase epitaxy, an increase in thickness leads to incomplete silicide formation and the appearance of a layer of disordered iron monosilicide with a thickness of 10 to 20 nm. This is confirmed by a change in the temperature dependence of resistivity ρ from semiconductor to semi-metallic and a decrease in resistivity by one and a half to two times. The nonmonotonic nature of the temperature dependence of the resistivity ρ ultrathin FeSi film with a thickness of 3.2 nm has been established, in which a maximum at 230–240 K, a region of growth from 160 to 65 K with Eg = 14.8 meV and further growth without saturation to a temperature of 1.5 K are observed. With increasing thickness of FeSi films grown by molecular-beam epitaxy, the minimum and maximum are not observed, but the tendency of nonmonotonic growth of ρ(T) with decreasing temperature and the opening of the band gap Eg = 23 meV remains. The probable reasons for the occurrence of effects in the dependences ρ(T) are considered. In ultrathin and thin FeSi films grown by solid-phase and molecular-beam epitaxy, respectively, an anomalous Hall effect was found, which was confirmed by the weak ferromagnetic properties of the films. The results obtained proved the possibility of growing and controlling the properties of ultrathin and thin FeSi films on silicon obtained by solid-phase and molecular-beam epitaxy, which ensured the appearance of their unique transport and magnetic properties that are absent in single crystals.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3