Observation of Surface Plasmon Resonance in Monochromatic Terahertz Radiation on Indium Antimonide

Author:

Khasanov I. Sh.12,Gerasimov V. V.34,Kameshkov O. E.34,Nikitin A. K.1,Kassandrоv V. V.2

Affiliation:

1. Scientific and Technological Centre of Unique Instrumentation RAS

2. Peoples’ Friendship University of Russia named after Patrice Lumumba

3. Budker Institute of Nuclear Physics SB RAS

4. Novosibirsk State Universiry

Abstract

Currently, the terahertz frequency range, which is on the border of the microwave and optical ranges, is being intensively mastered. One of the widely used materials in terahertz optics is indium antimonide (InSb), the plasma frequency ωp of which depends on the degree of doping, temperature, and surface illumination. The possibility of generating surface plasmon polaritons, a type of surface electromagnetic waves, on the surface of an InSb sample using the attenuated total reflectance method (ATR) (Otto scheme) is discussed. Using the scattering matrix formalism, the conditions for the highest efficiency of excitation of surface plasmon polaritons are established. If terahertz radiation with a frequency slightly less than ωp is used for this, the propagation length of such plasmons and the depth of their field penetration into the environment (air) are comparable to the radiation wavelength. It is possible to achieve surface plasmon resonance in the form of a sharp decrease in the intensity of monochromatic radiation reflected from the base of the ATR prism with a change in the angle of incidence and the size of the air gap. Test experiments were performed to observe surface plasmon resonance on an InSb wafer using a high-resistance silicon prism and monochromatic radiation (λ = 141 μm) from the Novosibirsk free electron laser. The dependence of the resonant dip on the size of the air gap separating the prism from the sample surface is studied, and its optimal (in the case of resonsnce) value is established for semiconductors with a plasma frequency in the terahertz range.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3