On a Mathematical Model of the Diffusion of Excitons in a Semiconductor Taking into Account Their Variable Lifetime

Author:

Seregina E. V.1,Stepovich M. A.2,Filippov M. N.3

Affiliation:

1. Bauman Moscow State Technical University (National Research University), Kaluga Branch

2. Tsiolkovsky Kaluga State University

3. Kurnakov Institute of General and Inorganic Chemistry RAS

Abstract

The time dependence of the concentration of nonequilibrium minority charge carriers generated in a homogeneous semiconductor material by a sharply focused electron beam, an electron probe, after the target irradiation is described. A mathematical model is constructed for the nonstationary diffusion of charged particles generated by a low-energy electron probe in a semiconductor target in the presence of two independent recombination channels of generated charge carriers in the target material. The use of a low-energy electron probe made it possible to use a two-dimensional mathematical model of diffusion in the simulation. As an initial condition in this model, the distribution of the concentration of nonequilibrium minority charge carriers under quasi-equilibrium conditions, before turning off the electron irradiation, is used. In the presence of two independent recombination channels, the profile of the decline in the concentration of nonequilibrium minority charge carriers in the target after the electron irradiation is turned off is described by the sum of two time-dependent exponents. This approach made it possible to obtain a solution to the differential equation for two-dimensional diffusion of charge carriers, taking into account their variable effective lifetime. The practical application of the developed mathematical model is implemented for the method of time-of-flight cathodoluminescence in describing the diffusion of excitons in single-crystal gallium nitride, taking into account the dependence of the concentration of generated excitons on time.

Publisher

The Russian Academy of Sciences

Reference24 articles.

1. Растровая электронная микроскопия для нанотехнологий. Методы и применение / Ред. Жу У., Уанга Ж.Л. М.: БИНОМ. Лаборатория знаний, 2013. 582 с.

2. Goldstein J.I., Newbury D.E., Michael J.R., Ritchie N.W., Scott J.H.J., Joy D.C. Scanning electron microscopy and X-ray microanalysis. N.Y. Inc.: Springer-Verlag, 2018. 550 p.

3. Конников С.Г., Сидоров А.Ф. Электронно-зондовые методы исследования полупроводниковых материалов и приборов. М.: Энергия, 1978. 135 с.

4. Якимов Е.Б. // Кристаллография. 2021. Т. 66. № 4. С. 540. https://www.doi.org/10.31857/S0023476121040226

5. Yacobi B.G., Holt D.B. Cathodoluminescence microscopy of inorganic solids. N.Y.: Plenum Press, 1990. 354 pp.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3