Modeling of Physical-Chemical and Electronic Properties of Lithium-Containing 4H—SiC and Binary Phases of the Si—C–Li System

Author:

Asadov M. M.12,Huseynova S. S.3,Mustafaeva S. N.3,Mammadova S. O.3,Lukichev V. F.4

Affiliation:

1. Nagiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of Azerbaijan

2. Scientific Research Institute of Geotechnological Problems of Oil, Gas and Chemistry

3. Institute of Physics, Ministry of Science and Education of Azerbaijan

4. Valiev Physics and Technology Institute, Russian Academy of Sciences

Abstract

In the equilibrium model of the solid surface–adatom system, including a three-dimensional interfacial surface, changes in surface properties are considered, taking into account the chemical potential due to the action of surface tension. The relationship between chemical potential and electrochemical potential of the ith component in an electrochemical cell is analyzed. Using the density functional theory (DFT), the adsorption, electronic, and thermodynamic properties of 2 × 2 × 1 and 3 × 3 × 1 supercells of crystalline compounds AmBn, (, where n and m are stoichiometric coefficients) of the boundary binary systems of the ternary phase diagram of Si–C–Li are studied. The stability of phases AmBn and property calculations are carried out with the exchange-correlation functional within the framework of the generalized gradient approximation (GGA PBE). The parameters of the crystal structures of the compounds AmBn, the adsorption energy of the lithium adatom on a 4H–SiC substrate, the electronic structure, and the thermodynamic properties of supercells are calculated. The thermodynamically stable configurations of the 4H–SiC–Liads supercells having different locations Liads are determined. The DFT GGA PBE calculations of the enthalpy of formation of compounds AmBn are carried out in the ternary Si–C–Li system. Taking into account the changes in the Gibbs free energy in the solid-phase exchange reactions between binary compounds, equilibrium sections (connodes) in the concentration triangle of the Si–C–Li phase diagram are established. An isothermal section of the Si–C–Li phase diagram at 298 K is constructed. The patterns of diffusion processes that are related to the movement of particles on the surface layer of the 6H–SiC sample are analyzed. The activation energy of lithium diffusion in 6H–SiC is calculated from the Arrhenius type relation in two temperature ranges (769–973 K) and (1873–2673 K).

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3