Affiliation:
1. Soil and Landscape Geography Group, Wageningen University
2. BSCIENTIFIC Research Computing Center, Lomonosov Moscow State University
3. Agrarno-Tekhnologicheskiy Institute, RUDN
4. Facultet of Soil Science, Lomonosov Moscow State University
5. Institute of Geography of the Russian Academy of Sciences
Abstract
Against the backdrop of global warming, urban ecosystems are becoming increasingly vulnerable to climate stresses. Strategies for climate adaptation developed for almost every major city in the world pay considerable attention to urban green infrastructure as a nature-oriented solution for carbon sequestration. However, the influence of urban climate conditions on the spatial and temporal heterogeneity of CO2 emissions from urban soils remains poorly understood, which can lead to inaccurate estimates and probably inflated expectations of urban green infrastructure in the context of carbon neutrality. Studies of CO2 emission dynamics with parallel observation of soil temperature and moisture were conducted at three green infrastructure sites in the Moscow metropolis, which differ in contrasting mesoclimatic conditions, in 2019–2022. Plots with different vegetation types were compared for each site, which allowed us to assess the internal heterogeneity of soil and microclimatic conditions. Soil temperature and moisture were determined to 70% of the total variance of CO2 emissions. At the same time, mean annual soil temperature in the center was almost 3–6°C higher and moisture was 10–15% lower compared to the periphery. Soils under lawns and bushes were, on average, 1–2°C warmer and 10–15% wetter than under trees. Soil CO2 emission under lawns was, on average, 20–30% higher than that under woody plantings in the same plot. At the same time, the differences between the plots with the same vegetation in the center and on the periphery reached 50%, which confirms the high vulnerability of urban soil carbon stocks to mesoclimatic anomalies and the high risks of increased CO2 emission by urban soils against the background of climate change.
Publisher
The Russian Academy of Sciences
Reference81 articles.
1. Абакумов Е.В., Поляков В.И., Чуков С.Н. Подходы и методы изучения органического вещества почв карбоновых полигонов России (обзор) // Почвоведение. 2022. № 7. С. 773–786. https://doi.org/10.31857/S0032180X22070024
2. Брянская И.П., Васенев В.И., Брыкова Р.А., Маркелова В.М., Ушакова Н.В., Госсе Д.Д., Гавриленко Е.В., Благодатская Е.В. Анализ ввозимых почвогрунтов для прогнозирования запасов углерода в почвенных конструкциях Московского мегаполиса // Почвоведение. 2020. № 12. С. 1537–1546. https://doi.org/10.31857/S0032180X20120047
3. Васенев В.И., Прокофьева Т.В., Макаров О.А. Разработка подхода к оценке запасов почвенного органического углерода мегаполиса и малого населенного пункта // Почвоведение. 2013. № 6. С. 725–736. https://doi.org/10.7868/S0032180X13060117
4. Васенев И.И., Мелесе С.М., Малахов А.О. Экологическая оценка сезонной динамики почвенных потоков CO2 и содержания гумуса дерново-подзолистых почв на склоновой катене лесопарка при разных уровнях рекреационной нагрузки // АгроЭкоИнфо: Электронный научно-производственный журн. 2022. № 4. https://doi.org/10.51419/202124419
5. Визирская М.М. Функционально-экологическая оценка лесных подзолистых почв в условиях Московского мегаполиса: на примере ЛОД РГАУ-МСХА имени К.А. Тимирязева. Дис. ... к.б.н. М., 2014. 156 с.