Acute and Sublethal Impacts of Crude Oil Photo-Induced Toxicity in an Early Life Stage Marine Fish (Sciaenops ocellatus) and Invertebrate (Americamysis bahia)

Author:

,Leads Rachel Renee

Abstract

We investigated the modifying effects of ultraviolet (UV) light and chemical dispersant (Corexit 9500A) on crude oil toxicity in juvenile mysids (≤ 24 h) (Americamysis bahia) and larval red drum (24-72 hpf) (Sciaenops ocellatus). These results demonstrate that crude oil toxicity significantly increases with co-exposure to environmentally relevant UV levels in both species, indicating photo-induced toxicity. This toxicity was further exacerbated by the application of chemical dispersants which increased the dissolution and concentration of oil-derived polycyclic aromatic hydrocarbons (PAHs) in test solutions. To better understand the mechanisms and initiating events of this observed photo-induced toxicity, the incidence of apoptotic cell death and global transcriptomic changes were assessed in larval red drum (24-72 hpf) following co-exposure to crude oil and UV. These results showed that co-exposure to UV and low concentrations of crude oil (<1 µg/L ∑PAH50) induced apoptotic cell death in skin and eye tissue and altered transcriptomic pathways related to visual processing and dermatological disease. To link these cellular and molecular impacts of photo-induced toxicity to apical endpoints of ecological performance, sublethal impacts to growth, metabolic rate, and visually mediated behaviors were explored in larval red drum at 2 developmental stages. These results suggested that earlier life stages may be more sensitive to photo-induced toxicity and that growth and development, particularly of sensory systems, can be sensitive targets of photo-induced toxicity. Together, these studies provide novel insights into the photo-induced toxicity of crude oil in aquatic organisms and can be used to inform future ecological risk assessments.

Publisher

University of North Texas Libraries

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3