Use of Artificial Intelligence to Monitor the Reliability of Removable Load-Handling Devices

Author:

Egelsky V. V.1ORCID,Nikolaev N. N.1ORCID,Egelskaya E. V.1ORCID,Korotkiy A. A.1ORCID

Affiliation:

1. Don State Technical University

Abstract

Introduction. The malfunction of removable load-handling devices (RLHD) poses significant production risks. That is why research in this field is relevant. The problem has often become a topic of scientific investigation. The authors propose using artificial intelligence more extensively to monitor the state of RLHD. This paper presents a study on how to improve the machine vision model to better identify the absence of locks on RLHD hooks. A probable occurrence of such an issue in production is noted. A storage and monitoring system for RLHD condition is proposed. The aim of this study is to demonstrate the potential for further training of neural networks to significantly enhance the efficiency of RLHD monitoring, ensuring their safe use.Materials and Methods. The work is based on the results of a survey conducted at the LLC “KZ Rostselmash” plant from 2022 to 2023, involving 144 RLHD. Mathematical statistics methods were used to process the data. A neural network model previously trained using the YOLO computer vision algorithm was studied. It was retrained taking into account the norms of the rejection of RLHD, specified in federal rules and standards. Images of RLHD with defects and missing parts were collected from these sources and used to create a training database. The database was expanded by augmentation. The Roboflow platform was used for work.Results. The array of images used for further training of the neural network was divided into three samples: training (88%), validation (8%) and test (4%). These samples were used to train and validate its results. The training was completed after 260 epochs, with a steady increase in accuracy. The neural network model of computer vision obtained in this way automatically detected a common defect in the RLHD hook — the absence of a lock. Its performance was assessed using three indicators: average accuracy (94%), prediction accuracy (88.8%) and response (89.2%). The neural network could receive images from a video camera in real-time and recognize hook defects. During the RLHD inspection at the Rostselmash plant, a grab for lifting engines was found to have all three hooks defective — without locks. To avoid such situations, at the end of work, it was recommended to place the RLHD on a special stand equipped with a microcontroller device that could monitor for a number of potential issues using radio frequency identification.Discussion and Conclusions. The main goal of this proposed solution is to detect and address signs of non-compliance with the established standards. This task can be implemented in facilities that use lifting equipment. In this case, the timely noticed RLHD defects will allow preventing production incidents. As a result, material damage can be reduced and injury statistics improved.  

Publisher

FSFEI HE Don State Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3