Grid-characteristic method using superimposed grids in the problem of seismic exploration of fractured geological media

Author:

Mitkovets I. A.1ORCID,Khokhlov N. I.1ORCID

Affiliation:

1. Moscow Institute of Physics and Technology (National Research University)

Abstract

Introduction.Seismic exploration in conditions of heterogeneity of the environment is an urgent topic for the oil and gas industry. Consequently, the development of numerical methods for solving the direct problem of seismic exploration remains relevant as a necessary link in the development and improvement of methods for solving the inverse problem. The Schonberg thin crack model has performed well in the numerical solution of problems requiring explicit consideration of geological inhomogeneities.Materials and Methods. In this paper, we consider a modification of the grid-characteristic method using superimposed grids. The presented approach makes it possible to conduct computational experiments, explicitly taking into account fractured inhomogeneities with arbitrary spatial orientation. For this, in addition to the basic regular computational grid, there is the concept of superimposed grids. Inhomogeneities, such as cracks, are described within the framework of the superimposed grid and, in turn, have no restrictions associated with the main grid. Thus, by performing an interpolation operation between the superimposed main grids, we can bypass the requirement of alignment of cracks and edges of the main grid.Results. The proposed approach made it possible to study the dependence of the anisotropy of the seismic response of a fractured cluster on the dispersion of the angles of inclination of the cracks.Discussion and Conclusions. A modification of the grid-characteristic method using superimposed grids is proposed to explicitly account for fractured inhomogeneities in a heterogeneous geological environment.

Publisher

FSFEI HE Don State Technical University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3