Determining the Rheological Parameters of Polymers Using Machine Learning Techniques

Author:

Chepurnenko A. S.1ORCID,Kondratieva T. N.1ORCID

Affiliation:

1. Don State Technical University

Abstract

Introduction. The paper investigates the methodology for determining the rheological parameters of materials based on the nonlinear Maxwell-Gurevich rheological model using the stress relaxation curves. The review of the main directions of the metaheuristic approaches (local search, evolutionary algorithms) to solving the combinatorial optimization problems is presented. The metaheuristic algorithms for solving some important combinatorial optimization problems with the special emphasis on building decision trees are described. The comparative analysis of the algorithms for solving the regression problem in CatBoost Regressor is carried out. The aim of the work is to determine the rheological properties of polymers using machine learning techniques.Materials and Methods. The objects of the study are the generated data sets obtained on the basis of the theoretical stress relaxation curves. The source data tables for model training across all samples are presented, and the statistical analysis of the source data sets characteristics is carried out. The total number of numerical experiments across all samples amounted to 346020 variations. To develop the models, the CatBoost artificial intelligence techniques were used; the regularization techniques (Weight Decay, Decoupled Weight Decay Regulation, Augmentation) were used to increase the model accuracy; and Z–Score technique was used for data normalization.Results. As a result of the research, the intelligent models for determining the rheological parameters of polymers (initial relaxation viscosity, velocity modulus) have been developed based on the generated data sets on the example of the epoxy binder EDT-10. Based on the testing results of the models with the best parameters, the quality assessments were carried out: for the parameter 𝜂0 the range of values MAPE 0.46 — 2.72, MSE 0.15 — 1.09, RMSE 0.19 —  0.44, MAPE 0.46 — 1.27; for the parameter 𝑚 — MAPE 0.07 — 0.32, MSE 0.01 —  0.13, RMSE 0.10 — 0.41, MAPE 0.58 — 2.72. The resulting metric values are permissible. The training graphs demonstrate the stability of the process.Discussion and Conclusion. The developed intelligent models are scalable and cross-platform, have practical applied significance that ensures their implementation in a wide range of the scientific and engineering apps. 

Publisher

FSFEI HE Don State Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3