Modelos predictivos de riesgo académico en carreras de computación con minería de datos educativos

Author:

Ayala Franco EnriqueORCID,López Martínez Rocío EdithORCID,Menéndez Domínguez Víctor HugoORCID

Abstract

Los problemas de bajo rendimiento académico y rezago son recurrentes en instituciones educativas de nivel superior, especialmente al inicio de los estudios universitarios. En el contexto local, análisis diagnósticos han mostrado altos índices de reprobación y bajo rendimiento académico. En este trabajo, se utilizaron datos sociodemográficos y resultados de exámenes de admisión de 415 alumnos de las carreras del área de computación de la Universidad Autónoma de Yucatán (México), inscritos entre 2016 y 2019. El objetivo es generar modelos predictivos de riesgo académico, empleando métodos de la minería de datos educativa, que sirvan como herramientas de detección temprana de condiciones de riesgo académico y faciliten el despliegue de estrategias de intervención educativa. Se siguieron las etapas del Proceso de Extracción de Conocimiento en Bases de Datos, concretamente, se aplicaron técnicas de clasificación para el análisis, obtención y validación de los modelos. Los resultados muestran que el mejor modelo corresponde al algoritmo LMT, con un valor de precisión de 75.42% y un 0.805 para el área bajo la curva ROC. Se logró identificar a los mejores atributos predictores, particularmente las pruebas del examen de ingreso a licenciatura fueron muy significativas. Se propone el desarrollo de herramientas informáticas para la detección precoz de riesgo académico y estrategias de intervención educativa oportuna. The problems of poor academic performance and lag are recurrent in higher-level educational institutions, especially at the beginning of university studies. The early detection of academic risk conditions enables the implementation of educational intervention measures to address factors of poor school performance, associated with the particular contexts of the students. The purpose of this study was to generate predictive models of academic risk, using educational data mining methods, specifically classification or prediction techniques, for the analysis, obtaining and validation of the models. The data used correspond to admission exam results and sociodemographic data of 415 students of the computer science majors at the Autonomous University of Yucatán (Mexico), enrolled between 2016 and 2019. The results show that the best model corresponding to the algorithm of LMT classification, with a precision value of 75.42% and 0.805 for the area under the ROC curve. It was possible to identify the best predictive attributes, particularly the bachelor entrance exam tests were very significant. The development of computer tools for the early detection of academic risk and strategies for timely educational intervention is proposed.

Publisher

Servicio de Publicaciones de la Universidad de Murcia

Subject

Education

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3