NOVEL INSIGHTS INTO PHASE FORMATION AND ELECTRICAL RESISTIVITY OF FeSe ALLOY PREPARED BY POWDER METALLURGY METHOD

Author:

Dwi Yudanto SigitORCID,Nita Deslia Sari DeaORCID,Fitriandhani Ryan,Imaduddin AgungORCID,Widya Pramono AndikaORCID

Abstract

This study prepared the FeSe alloy using a powder metallurgy route. The Fe and Se powders were weighed at an atomic ratio of Fe:Se = 1.025:1 and milled for 5 hours. A simultaneous thermal analysis (STA) was performed to observe the behavior of the milled powder during thermal changes. After packing the milled powder in a stainless-steel tube, it was compacted. Investigation was performed to observe how the tetragonal FeSe phase forms at sintering temperatures of 718 K, 818 K, and 918 K. At a sintering temperature of 718 K, the tetragonal FeSe phase was formed, as determined by our quantitative analysis of XRD. The highest tetragonal FeSe phase fraction of 68.46 wt.% was obtained at a temperature of 918 K. The lattice constants of the tetragonal FeSe for the best sample were a = 0.3773 nm and c = 0.5520 nm. The resistivity test demonstrated that all samples have a conductor phenomenon exceeding 16 K, with a maximum Tc-onset value of 15.11 K.

Publisher

SciCell

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3