The Permutation Distancing Test for dependent single-case observational AB-phase design data: A Monte Carlo simulation study

Author:

Vroegindeweij AnoukORCID,Nijhof Linde N.,Onghena Patrick,van de Putte Elise M.,Nijhof Sanne L.,Houtveen Jan

Abstract

AbstractThe Permutation Distancing Test (PDT) is a nonparametric test for evaluating treatment effects in dependent single-case observational design (SCOD) AB-phase data without linear trends. Monte Carlo methods were used to estimate the PDT power and type I error rate, and to compare them to those of the Single-Case Randomization Test (SCRT) assuming a randomly determined intervention point and the traditional permutation test assuming full exchangeability. Data were simulated without linear trends for five treatment effect levels (– 2, – 1, 0, 1, 2), five autocorrelation levels (0, .15, .30, .45, .60), and four observation number levels (30, 60, 90, 120). The power was calculated multiple times for all combinations of factor levels each generating 1000 replications. With 30 observations, the PDT showed sufficient power (≥ 80%) to detect medium treatment effects up to autocorrelation ≤ .45. Using 60 observations, the PDT showed sufficient power to detect medium treatment effects regardless of autocorrelation. With ≥ 90 observations, the PDT could also detect small treatment effects up to autocorrelation ≤ .30. With 30 observations, the type I error rate was 5–7%. With 60 observations and more, the type I error rate was ≤ 5% with autocorrelation < .60. The PDT outperformed the SCRT regarding power, particularly with a small number of observations. The PDT outperformed the traditional permutation test regarding type I error rate control, especially when autocorrelation increased. In conclusion, the PDT is a useful and promising nonparametric test to evaluate treatment effects in dependent SCOD AB-phase data without linear trends.

Publisher

Springer Science and Business Media LLC

Subject

General Psychology,Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3