eyeScrollR: A software method for reproducible mapping of eye-tracking data from scrollable web pages

Author:

Larigaldie NathanaelORCID,Dreneva Anna,Orquin Jacob L.

Abstract

AbstractThe Internet has become an important part of our lives and an increasing number of researchers use eye-tracking technology to examine attention and behavior in online environments. Researchers, however, face a significant challenge in mapping eye-tracking data from scrollable web pages. We describe the R package eyeScrollR for mapping eye-tracking data from scrollable content such as web pages. The package re-maps eye-tracking gaze coordinates to full-page coordinates with a deterministic algorithm based on mouse scroll data. The package includes options for handling common situations, such as sticky menus or ads that remain visible when the user scrolls. We test the package’s validity in different hardware and software settings and on different web pages and show that it is highly accurate when tested against manual coding. Compared to current methods, eyeScrollR provides a more reproducible and reliable approach for mapping eye-tracking data from scrollable web pages. With its open code and free availability, we recommend eyeScrollR as an essential tool for eye-tracking researchers, particularly those who adhere to open-science principles. The eyeScrollR package offers a valuable contribution to the field of eye-tracking research, facilitating accurate and standardized analysis of eye-tracking data in web scrolling contexts.

Funder

Aarhus Universitets Forskningsfond

Danmarks Frie Forskningsfond

Publisher

Springer Science and Business Media LLC

Reference15 articles.

1. Alemdag, E., & Cagiltay, K. (2018). A systematic review of eye tracking research on multimedia learning. Computers & Education, 125, 413–428.

2. Anderson, M., Jiang, J., et al. (2018). Teens, social media & technology 2018. Pew Research Center, 31(2018), 1673–1689.

3. Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., et al. (2022). shiny: Web application framework for r. [R package version 1.7.2]. Available from: https://CRAN.R-project.org/package=shiny.

4. Gidlöf, K., Wallin, A., Dewhurst, R., & Holmqvist, K. (2013). Using eye tracking to trace a cognitive process: Gaze behaviour during decision making in a natural environment. Journal of Eye Movement Research, 6.

5. Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. OUP Oxford.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3