Estimation of the Electric Field Zonal Component Value and Particle Transfer Velocity Due To Electromagnetic Drift in the Ionosphere during Magnetic Storm on September 25, 2016 over Kharkiv

Author:

Lyashenko Mykhaylo1ORCID,Kolodyazhnyi Vyacheslav1ORCID

Affiliation:

1. Institute of ionosphere, NAS and MES of Ukraine

Abstract

Background. Dynamic processes in plasma play a significant role in the formation of the spatial structure of the ionosphere at altitudes above the main ionization maximum. During geomagnetic disturbances, the dynamic mode of the ionospheric plasma noticeably changes, and these changes in the variations in the physical process parameters directly affect the spatial-temporal distribution of the main parameters of the ionosphere. One of the mechanisms affecting the behavior of the dynamic process parameters in the ionosphere is the penetration of electric fields of magnetospheric origin into the mid-latitude ionosphere during magnetic storms. The effects of the electric field, which are practically absent in quiet conditions, during geomagnetic storms lead to an additional transfer of charged particles due to electromagnetic drift. Accounting for these effects in variations in the dynamic process parameters and, as a consequence, in variations in the parameters of the ionosphere, is necessary for a more adequate prediction of the behavior of geospace parameters during geomagnetic disturbances. Development of ionospheric models of the disturbed ionosphere for solving applied problems in the field of radio communication, radio navigation and uninterrupted operation of telecommunication systems for various purposes. The aim of this work is to estimate the magnitude of the zonal component of the electric field in the ionosphere over Kharkiv during a weak magnetic storm on September 25, 2016, as well as to calculate the neutral wind velocity taking into account plasma transport in crossed electric and magnetic fields. Materials and methods. To calculate the parameters of dynamic processes in the ionosphere, the experimental data of the Kharkiv incoherent scatter radar were used. Results. The value of the zonal component of the electric field Ey was calculated during a weak magnetic storm on September 25, 2016. The maximum value of Ey took place around 23:00 EEST on September 25, 2016 and was equal to 5.9 mV/m. Calculated values of particle transfer velocity due to electromagnetic drift vEB during the September 25, 2016 magnetic storm are obtained. Variations in vEB correlate with variations in Ey, and the maximum velocity was –52 m/s. The calculation results showed that during weak magnetic storms (Kp = 4) it is necessary to take into account the plasma transfer due to electromagnetic drift. The contribution of the velocity vEB to the total velocity of charged particle transfer is significant. The neutral (thermospheric) wind velocity vnx is calculated without and taking into account the particle transfer velocity in crossed electric and magnetic fields. Conclusions. As shown by the results of the comparative analysis, taking into account the influence of the electric field made it possible to refine the values of the velocities vnx during a magnetic storm, which, in turn, makes it possible to explain the behavior of the main parameters of the F2 layer of the ionosphere under disturbed conditions.

Publisher

Institute of Ionosphere NAS and MES of Ukraine

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3