AI at the Edge for Sign Language Learning Support

Author:

Battistoni Pietro1

Affiliation:

1. University of Salerno

Abstract

In the field of multimodal communication, sign language is and continues to be, one of the most understudied areas. Thanks to the recent advances in the field of deep learning, there are far-reaching implications and applications that neural networks can have for sign language mastering. This paper describes a method for ASL alphabet recognition using Convolutional Neural Networks (CNN), which allows to monitor user’s learning progress. American Sign Language (ASL) alphabet recognition by computer vision is a challenging task due to the complexity in ASL signs, high interclass similarities, large intraclass variations, and constant occlusions. We produced a robust model that classifies letters correctly in a majority of cases. The experimental results encouraged us to investigate the adoption of AI techniques to support learning of a sign language, as a natural language with its own syntax and lexicon. The challenge was to deliver a mobile sign language training solution that users may adopt during their everyday life. To satisfy the indispensable additional computational resources to the locally connected end- user devices, we propose the adoption of a Fog-Computing Architecture.

Publisher

Institute for Semantic Computing Foundation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Can AI-Oriented Requirements Enhance Human-Centered Design of Intelligent Interactive Systems? Results from a Workshop with Young HCI Designers;Multimodal Technologies and Interaction;2023-02-25

2. AI-Based Emotion Recognition to Study Users’ Perception of Dark Patterns;HCI International 2022 - Late Breaking Papers. Design, User Experience and Interaction;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3