Abstract
We study the problem of maximizing the probability of stopping at an object which is best in at least one of a given set of criteria, using only stopping rules based on the knowledge of whether the current object is relatively best in each of the criteria. The asymptotic results for the case of independent criteria are shown to hold in certain cases where the componentwise maxima are, pairwise, either asymptotically independent or asymptotically full dependent.An example of the former is a random sample from a bivariate correlated normal distribution; thus our results settle a question posed recently by T. S. Ferguson.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献