Jumps of quasi-minimal enumeration degrees

Author:

McEvoy Kevin

Abstract

Enumeration reducibility is a reducibility between sets of natural numbers defined as follows: A is enumeration reducible to B if there is some effective operation on enumerations which when given any enumeration of B will produce an enumeration of A. One reason for interest in this reducibility is that it presents us with a natural reducibility between partial functions whose degree structure can be seen to extend the structure of the Turing degrees of unsolvability. In [7] Friedberg and Rogers gave a precise definition of enumeration reducibility, and in [12] Rogers presented a theorem of Medvedev [10] on the existence of what Case [1] was to call quasi-minimal degrees. Myhill [11] also defined this reducibility and proved that the class of quasi-minimal degrees is of second category in the usual topology. As Gutteridge [8] has shown that there are no minimal enumeration degrees (see Cooper [3]), the quasi-minimal degrees are very much of interest in the study of the structure of the enumeration degrees. In this paper we define a jump operator on the enumeration degrees which was introduced by Cooper [4], and show that every complete enumeration degree is the jump of a quasi-minimal degree. We also extend the notion of a high Turing degree to the enumeration degrees and construct a “high” quasi-minimal enumeration degree—a result which contrasts with Cooper's result in [2] that a high Turing degree cannot be minimal. Finally, we use the Sacks' Jump Theorem to characterise the jumps of the co-r.e. enumeration degrees.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enumeration Degrees of the Bounded Sets;Modeling and Analysis of Information Systems;2022-06-17

2. On cototality and the skip operator in the enumeration degrees;Transactions of the American Mathematical Society;2019-05-09

3. Enumeration 1-Genericity in the Local Enumeration Degrees;Notre Dame Journal of Formal Logic;2018-01-01

4. The enumeration degrees: Local and global structural interactions;Foundations of Mathematics;2017

5. Ivan Soskov: A Life in Computability;The Incomputable;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3