Random wear models in reliability theory

Author:

Reynolds David S.,Savage I. Richard

Abstract

Gaver (1963) and Antelman and Savage (1965) have proposed models for the distribution of the time to failure of a simple device exposed to a randomly varying environment. Each model represents cumulative wear as a specified function of a non-negative stochastic process with independent increments, and assumes that the reliability of the device is conditioned upon realizations of this process. From these models are derived the corresponding unconditional joint distributions for the random failure time vector of n independent, identical devices exposed to the same realization of the wear process. It is shown that the identical failure time distribution for one component can arise from each model. In the Gaver model simultaneous failure times occur with positive probability. The probabilities of specific tie configurations are developed.For an interesting class of Gaver models involving a time scale parameter, the maximum likelihood estimates from several devices in one environment are examined. In that case the tie configuration probability does not depend on the parameter. For the corresponding Antelman-Savage models a consistent sequence of estimators is obtained; the maximum likelihood theory did not appear tractable.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On exact sampling of the first passage event of a Lévy process with infinite Lévy measure and bounded variation;Stochastic Processes and their Applications;2016-04

2. Continuous State Degradation Models;Springer Series in Reliability Engineering;2015-11-28

3. Bayesian inference of hidden gamma wear process model for survival data with ties;Statistica Sinica;2015

4. Wear;Wiley StatsRef: Statistics Reference Online;2014-09-29

5. Replacement Policies with a Random Threshold Number of Faults;Proceedings of the Institute of Industrial Engineers Asian Conference 2013;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3