Abstract
Let be a process with stationary, independent increments and no negative jumps. Let be this same process modified by a reflecting barrier at zero (a storage process). Assuming that – and denote by ψ(s) the exponent function of X. A simple formula is derived for the Laplace transform of as a function of W(0). Using the fact that the distribution of M is the unique stationary distribution of the Markov process W, this yields an elementary proof that the Laplace transform of M is µs/ψ(s). If it follows that These surprisingly simple formulas were originally obtained by Zolotarev using analytical methods.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献