Abstract
Krull [4] extended Galois theory to arbitrary normal extensions, in which the Galois groups are precisely the profinite groups (i.e. totally disconnected, compact, Hausdorff groups). Metakides and Nerode [7] produced two recursively presented algebraic extensionsK⊂Fof the rationals such thatFis abelian,Fis of infinite degree overK, and the Galois group ofFoverK, although of cardinalityc, has only one recursive element (viz. the identity). This indicated the limits of effectiveness for Krull's theory. (The Galois theory offiniteextensions is completely effective.) Nerode suggested developing a natural effective version of Krull's theory (done here in §1).It is evident from the classical literature that the free profinite group on denumerably many generators can be obtained effectively as the Galois group of a recursive extension of the rationals over a subfield. Nerode conjectured that it could be obtained effectively as the Galois group of the algebraic numbers over a suitable subfield (done here in §2). The case of finitely many generators was done non-effectively by Jarden [3]. The author believes that the denumerable case, as presented in §2, is also new classically. Using this result and the effective Krull theory, every “co-recursively enumerable” profinite group is effectively the Galois group of a recursively enumerable field of algebraic numbers over a recursive subfield.
Publisher
Cambridge University Press (CUP)
Reference11 articles.
1. Effective content of field theory
2. Effective procedures in field theory;Fröhlich;Philosophical Transactions of the Royal Society of London, Series A,1955
3. Lectures in Abstract Algebra
4. Algebraic extensions of finite corank of hilbertian fields
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献