Author:
Stern Thomas E.,Elwalid Anwar I.
Abstract
In many communication and computer systems, information arrives to a multiplexer, switch or information processor at a rate which fluctuates randomly, often with a high degree of correlation in time. The information is buffered for service (the server typically being a communication channel or processing unit) and the service rate may also vary randomly. Accurate capture of the statistical properties of these fluctuations is facilitated by modeling the arrival and service rates as superpositions of a number of independent finite state reversible Markov processes. We call such models separable Markov-modulated rate processes (MMRP).In this work a general mathematical model for separable MMRPs is presented, focusing on Markov-modulated continuous flow models. An efficient procedure for analyzing their performance is derived. It is shown that the ‘state explosion' problem typical of systems composed of a large number of subsystems, can be circumvented because of the separability property, which permits a decomposition of the equations for the equilibrium probabilities of these systems. The decomposition technique (generalizing a method proposed by Kosten) leads to a solution of the equilibrium equations expressed as a sum of terms in Kronecker product form. A key consequence of decomposition is that the computational complexity of the problem is vastly reduced for large systems. Examples are presented to illustrate the power of the solution technique.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
138 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献