Analysis of separable Markov-modulated rate models for information-handling systems

Author:

Stern Thomas E.,Elwalid Anwar I.

Abstract

In many communication and computer systems, information arrives to a multiplexer, switch or information processor at a rate which fluctuates randomly, often with a high degree of correlation in time. The information is buffered for service (the server typically being a communication channel or processing unit) and the service rate may also vary randomly. Accurate capture of the statistical properties of these fluctuations is facilitated by modeling the arrival and service rates as superpositions of a number of independent finite state reversible Markov processes. We call such models separable Markov-modulated rate processes (MMRP).In this work a general mathematical model for separable MMRPs is presented, focusing on Markov-modulated continuous flow models. An efficient procedure for analyzing their performance is derived. It is shown that the ‘state explosion' problem typical of systems composed of a large number of subsystems, can be circumvented because of the separability property, which permits a decomposition of the equations for the equilibrium probabilities of these systems. The decomposition technique (generalizing a method proposed by Kosten) leads to a solution of the equilibrium equations expressed as a sum of terms in Kronecker product form. A key consequence of decomposition is that the computational complexity of the problem is vastly reduced for large systems. Examples are presented to illustrate the power of the solution technique.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Vacation Fluid M/M/1 Queue in Multi-Phase Random Environment;Mathematics;2023-10-26

2. Stochastic Fluid Models with Upward Jumps and Phase Transitions;Methodology and Computing in Applied Probability;2023-01-31

3. CDM: Content Diffusion Model for Information-Centric Networks;Journal of Computer Science and Technology;2021-11-30

4. Analytical Modelling of Content Transfer in Information Centric Networks;2021 IEEE 24th International Conference on Computational Science and Engineering (CSE);2021-10

5. Fluid M/M/1 catastrophic queue in a random environment;RAIRO - Operations Research;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3