Abstract
Consider a set S of countable non-negative matrices satisfying the property that for any two indices i, j, for some n ≧ 1 there are matrices M1, M2, · · ·, Mn in S with (M1M2 · · · Mn)ij >0. For non-negative vectors x set Tx = supM∈SMx, where the supremum is taken separately in each coordinate. Assume that for each x with Tx finite in each coordinate there is a matrix in S which achieves the supremum simultaneously for all coordinates. With these two assumptions on S, the R-theory for a countable irreducible matrix is extended to the operator T. The results are used to consider the existence of stationary optimal policies for Markov decision processes with multiplicative rewards.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献