Burn-in and mixed populations

Author:

Block Henry W.,Mi Jie,Savits Thomas H.

Abstract

Burn-in is a procedure used for eliminating weak components in a mixed population. In this paper we focus on general mixed populations. Three types of results are established. First, it is shown that any mixed population displays a type of monotonicity property which is appropriate for burn-in. Second, it is shown that if, asymptotically, components have constant failure rates, then the mixed population will also asymptotically have a constant failure rate and this will correspond to the rate of the strongest subpopulation of the mixture. Finally, it is shown for a reasonable cost function, that if one mixture distribution dominates another in a strong sense, the resulting mixture of the dominant distribution will have larger optimal burn-in time.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the hazard rate of α-mixture of survival functions;Communications in Statistics - Theory and Methods;2023-01-30

2. Stochastic properties of generalized finite α-mixtures;Probability in the Engineering and Informational Sciences;2021-07-15

3. On Some Properties of $$\alpha $$-Mixtures;Metrika;2021-04-08

4. All pixels are useful, but some are more useful: Efficient in situ data collection for crop-type mapping using sequential exploration methods;International Journal of Applied Earth Observation and Geoinformation;2020-09

5. Nanoscale Electronic Conditioning for Improvement of Nanowire Light-Emitting-Diode Efficiency;ACS Nano;2018-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3