Computably categorical structures and expansions by constants

Author:

Cholak Peter,Goncharov Sergey,Khoussainov Bakhadyr,Shore Richard A.

Abstract

Effective model theory is the subject that analyzes the typical notions and results of model theory to determine their effective content and counterparts. The subject has been developed both in the former Soviet Union and in the west with various names (recursive model theory, constructive model theory, etc.) and divergent terminology. (We use “effective model theory” as the most general and descriptive designation. Harizanov [6] is an excellent introduction to the subject as is Millar [13].) The basic subjects of model theory include languages, structures, theories, models and various types of maps between these objects. There are many ways to introduce considerations of effectiveness into the area. The two most prominent derive from starting, on the one hand, with the notion of a theory and its models or, on the other, with just structures.If one begins with theories, then a natural version of effectiveness is to consider decidable theories (i.e., ones with a decidable (equivalently, computable or recursive) set of theorems). When one moves to models and wants them to be effective, one might start with the requirement that the model (of any theory) have a decidable theory (i.e., Th (), the set of sentences true in , is decidable). Typically, however, one wants to be able to talk about the elements of the model as well as its theory in the given language. Thus one naturally considers the model as a structure for the language expanded by adding a constant ai, for each element ai of . Of course, one requires that the mapping from the constants to the corresponding elements of be effective (computable). We are thus lead to the following basic definition:A structure or model is decidable if there is a computable enumeration ai of A, the domain of , such that Th(, ai,) is decidable. (Of course, ai, is interpreted as ai, for each i Є ω.)

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference16 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3