On deciding the truth of certain statements involving the notion of consistency

Author:

Boolos George

Abstract

Friedman has posed (see [F, p. 117]) the following problem: “35. Define the set E of expressions by (i) Con is an expression; (ii) if A, B are expressions so are (~ A), (A&B), and Con(A). Each expression ϕ in E determines a sentence ϕ in PA [classical first-order arithmetic] by taking Con* to be “PA is consistent,” ( ~ A) * to be ~ (A*), (A&B)* to be A*&B*, and Con(A)* to be “PA + ‘A*’ is consistent.” The set of expressions ϕ ∈ E such that ϕ* is true is recursive.The formalized second incompleteness theorem readsIn order to simplify notation, we will reformulate Friedman's problem slightly. Let Con be the usual sentence of PA expressing the consistency of PA, ~ A the negation of A, (A&B) the conjunction of A and B, etc., and Bew(A) the result of substituting the numeral for the Gödel number of A for the free variable in the usual provability predicate for PA. Let Con(A) = ~ Bew(~ A). (Con(A) is equivalent in PA to the usual sentence expressing the consistency of PA + A.) And let the class of F-sentences be the smallest class which contains Con and which also contains ~ A, (A&B) and Con(A) whenever it contains A and B. Since ⊦PA Bew(A) ↔ Bew(B) if ⊦PAAB, Friedman's problem is then the question whether the class of true F-sentences is recursive.The answer is that it is recursive. To see why, we need a definition and a theorem.Definition. An atom is a sentence Conn for some n ≥ 1, where Cont = Con and Conn + 1 = Con(Conn).

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference3 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constructive truth and falsity in Peano arithmetic;Journal of Logic and Computation;2020-12-19

2. On the Constructive Truth and Falsity in Peano Arithmetic;Logical Foundations of Computer Science;2019-12-20

3. Anderson and Belnap’s Invitation to Sin;Journal of Philosophical Logic;2010-06-08

4. 16 Modal logic in mathematics;Handbook of Modal Logic;2007

5. In Memoriam: George Stephen Boolos 1940–1996;Bulletin of Symbolic Logic;1996-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3