Abstract
To what extent can mathematical thought be analyzed in formal terms? Gödel's theorems show the inadequacy of single formal systems for this purpose, except in relatively restricted parts of mathematics. However at the same time they point to the possibility of systematically generating larger and larger systems whose acceptability is implicit in acceptance of the starting theory. The engines for that purpose are what have come to be called reflection principles. These may be iterated into the constructive transfinite, leading to what are called recursive progressions of theories. A number of informative technical results have been obtained about such progressions (cf. Feferman [1962], [1964], [1968] and Kreisel [1958], [1970]). However, for some years I had hoped to give a more realistic and perspicuous finite generation procedure. This was first done in a rather special way in Feferman [1979] for the characterization of predicativity, which may be regarded as that part of mathematical thought implicit in our acceptance of elementary number theory. What is presented here is a new and simple notion of the reflective closure of a schematic theory which can be applied quite generally.Two examples of schematic theories in the sense used here are versions of Peano arithmetic and Zermelo set theory.
Publisher
Cambridge University Press (CUP)
Cited by
183 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献