A characterization of jump operators

Author:

Becker Howard

Abstract

The topic of this paper is jump operators, a subject which originated with some questions of Martin and a partial answer to them obtained by Steel [18]. The topic of jump operators is a part of the general study of the structure of the Turing degrees, but it is concerned with an aspect of that structure which is different from the usual concerns of classical recursion theory. Specifically, it is concerned with studying functions on the degrees, such as the Turing jump operator, the hyperjump operator, and the sharp operator.Roughly speaking, a jump operator is a definable ≤T-increasing function on the Turing degrees. The purpose of this paper is to characterize the jump operators, in terms of concepts from descriptive set theory. Again roughly speaking, the main theorem states that all jump operators (other than the identity function) are obtained from pointclasses by the same process by which the hyperjump operator is obtained from the pointclass Π11; that is, if Γ is the pointclass, then the operator maps the real x to the universal Γ(x) subset of ω. This characterization theorem has some corollaries, one of which answers a question of Steel [18]. In §1 we give a brief introduction to this general topic, followed by a brief (and still somewhat imprecise) description of the results contained in this paper.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological reducibilities for discontinuous functions and their structures;Israel Journal of Mathematics;2022-10-20

2. Uniform Martin’s conjecture, locally;Proceedings of the American Mathematical Society;2020-09-17

3. Well-Quasi Orders and Hierarchy Theory;Trends in Logic;2020

4. The uniform Martin’s conjecture for many-one degrees;Transactions of the American Mathematical Society;2018-09-18

5. The Recursively Enumerable Degrees;Handbook of Computability Theory;1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3