Author:
Miyazawa Masakiyo,Taylor Peter G.
Abstract
We introduce a batch service discipline, called assemble-transfer batch service, for continuous-time open queueing networks with batch movements. Under this service discipline a requested number of customers is simultaneously served at a node, and transferred to another node as, possibly, a batch of different size, if there are sufficient customers there; the node is emptied otherwise. We assume a Markovian setting for the arrival process, service times and routing, where batch sizes are generally distributed.Under the assumption that extra batches arrive while nodes are empty, and under a stability condition, it is shown that the stationary distribution of the queue length has a geometric product form over the nodes if and only if certain conditions are satisfied for the extra arrivals. This gives a new class of queueing networks which have tractable stationary distributions, and simultaneously shows that the product form provides a stochastic upper bound for the stationary distribution of the corresponding queueing network without the extra arrivals.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献