Author:
Simons Gordon,Yao Yi-Ching
Abstract
The problem of optimally allocating partially effective, defensive weapons against randomly arriving enemy aircraft so that a bomber maximizes its probability of reaching its designated target is considered in the usual continuous-time context, and in a discrete-time context. The problem becomes that of determining the optimal number of missiles K(n, t) to use against an enemy aircraft encountered at time (distance) t away from the target when n is the number of remaining weapons (missiles) in the bomber's arsenal. Various questions associated with the properties of the function K are explored including the long-standing, unproven conjecture that it is a non-decreasing function of its first variable.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献