Abstract
AbstractSection 1 is devoted to the study of countable recursively saturated models with an automorphism moving every non-algebraic point. We show that every countable theory has such a model and exhibit necessary and sufficient conditions for the existence of automorphisms moving all non-algebraic points. Furthermore we show that there are many complete theories with the property that every countable recursively saturated model has such an automorphism.In Section 2 we apply our main theorem from Section 1 to models of Quine's set theory New Foundations (NF) to answer an old consistency question. If NF is consistent, then it has a model in which the standard natural numbers are a definable subclass ℕ of the model's set of internal natural numbers Nn. In addition, in this model the class of wellfounded sets is exactly .
Publisher
Cambridge University Press (CUP)
Reference18 articles.
1. New foundations and the axiom of counting
2. On self-membered sets in Quine's set theory NF;Boffa;Logique et Analyse,1993
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献