Abstract
It is my intention in this paper to add somewhat to the observations already made in my earlier publications on the existence of undecidable statements in systems of logic possessing rules of inference of a “non-finitary” (“non-constructive”) character (§§1–4).I also wish to emphasize once more the part played by the concept of truth in relation to problems of this nature (§§5–8).At the end of this paper I shall give a result which was not touched upon in my earlier publications. It seems to be of interest for the reason (among others) that it is an example of a result obtained by a fruitful combination of the method of constructing undecidable statements (due to K. Gödel) with the results obtained in the theory of truth.1. Let us consider a formalized logical system L. Without giving a detailed description of the system we shall assume that it possesses the usual “finitary” (“constructive”) rules of inference, such as the rule of substitution and the rule of detachment (modus ponens), and that among the laws of the system are included all the postulates of the calculus of statements, and finally that the laws of the system suffice for the construction of the arithmetic of natural numbers. Moreover, the system L may be based upon the theory of types and so be the result of some formalization of Principia mathematica. It may also be a system which is independent of any theory of types and resembles Zermelo's set theory.
Publisher
Cambridge University Press (CUP)
Reference14 articles.
1. Über definierbare Mengen reeller Zahlen;Annales de la Société Polonaise de Mathématique,1930
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献