Abstract
We consider an L1 analogue of the least squares estimator for the parameters of stationary, finite-order autoregressions. This estimator, the least absolute deviation (LAD), is shown to be strongly consistent via a result that may have independent interest. The striking feature is that the conditions are so mild as to include processes with infinite variance, notably the stationary, finite autoregressions driven by stable increments in Lα, α > 1. Finally, sampling properties of LAD are compared to those of least squares. Together with a known convergence rate result for least squares, the Monte Carlo study provides evidence for a conjecture on the convergence rate of LAD.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献