Bayesian dynamic programming

Author:

Rieder Ulrich

Abstract

We consider a non-stationary Bayesian dynamic decision model with general state, action and parameter spaces. It is shown that this model can be reduced to a non-Markovian (resp. Markovian) decision model with completely known transition probabilities. Under rather weak convergence assumptions on the expected total rewards some general results are presented concerning the restriction on deterministic generalized Markov policies, the criteria of optimality and the existence of Bayes policies. These facts are based on the above transformations and on results of Hindererand Schäl.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Reference21 articles.

1. Positive dynamic programming;Blackwell;Proc. Fifth Berkeley Symp. Math. Statist. Prob.,1967

2. Negative Dynamic Programming

3. Fundamental theorems in a Bayes controlled process;Furukawa;Bull. Math. Statist.,1970

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy transition under scenario uncertainty: a mean-field game of stopping with common noise;Mathematics and Financial Economics;2024-01-24

2. Nonparametric Adaptive Robust Control under Model Uncertainty;SIAM Journal on Control and Optimization;2023-09-12

3. Markov Decision Processes with Incomplete Information and Semiuniform Feller Transition Probabilities;SIAM Journal on Control and Optimization;2022-08

4. A Class of Solvable Markov Decision Models with Incomplete Information;2021 60th IEEE Conference on Decision and Control (CDC);2021-12-14

5. Optimal Bayesian Demand Learning over Short Horizons;Production and Operations Management;2020-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3